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Abstract. A study of dynamic regimes in Bénard-Marangoni convection was carried out for various Prandtl
and Marangoni numbers in small aspect ratio geometries (Γ = 2.2 and 2.8). Experiments in a small
hexagonal vessel, for a large range of the Marangoni number (from 148 to 3636), were carried out. Fourier
spectra and an auto-correlation function were used to recognize the various dynamic regimes. For given
values of the Prandtl number (Pr = 440) and aspect ratio (Γ = 2.2), mono-periodic, bi-periodic and chaotic
states were successively observed as the Marangoni number was increased. The correlation dimensions of
strange attractors corresponding to the chaotic regimes were calculated. The dimensions were found to
be larger than those obtained by other authors for Rayleigh-Bénard convection in aspect ratio geometries
of the same order. The transition from temporal chaos to spatio-temporal chaos was also observed. For
Γ = 2.2, when larger values of the Marangoni number were imposed (Ma = 1581 for Pr = 160 and
Ma = 740 for Pr = 440), spatial modes were involved through the convective pattern dynamics.

PACS. 47.10.Fg Dynamic system methods – 47.52.+j Chaos in fluid dynamics

1 Introduction

In hydrodynamic instabilities, chaotic states are often ob-
served. For example, in convection instabilities, for a given
convective pattern and a fixed value of the Rayleigh num-
ber, a well-defined dynamic regime is observed. If the dy-
namics are chaotic, the observed chaos is temporal in a
system for which spatial order is preserved. However, when
the spatial modes are involved through the mobility of the
pattern, spatio-temporal chaos is observed, which is char-
acterized by the interaction between spatial and temporal
modes leading to a dynamic disorder of the convective
pattern.

Temporal chaos in confined geometries has been ob-
served in surface waves, Rayleigh-Bénard (RB) convection
and in other hydrodynamic instabilities [1–5]. Secondary
instabilities and chaotic behaviours in extended geome-
tries have also been studied theoretically and experimen-
tally [1–3,6,7]. Indeed, transition to spatio-temporal chaos
has been observed and characterized in various extended
systems, such as Rayleigh-Bénard convection, optical in-
stabilities, flames, chemical reactions, Faraday waves, a ro-
tating convective system, etc. . . [1–3,7]. When such com-
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plex systems are studied, the most appropriate methods
must be chosen to analyse their behaviour. Deterministic
methods are often used for the characterization of confined
systems and statistical tools for the study of extended ge-
ometries.

The study of Malkus [8] is among the first works
devoted to time-dependent flows and turbulence in ther-
mal convection. Subsequently, other authors observed ir-
regular temperature fluctuations in convection and tran-
sitions to chaos or turbulence which were studied as a
function of the Rayleigh number for various Prandtl num-
bers [9–11]. Rayleigh-Bénard (RB) convection has been
extensively studied because it is the simplest example of
a hydrodynamic system transiting to chaos [2]. Various
experiments have been conducted in order to explore the
possible scenarios of transition to chaos in RB convection
including subharmonic cascade, intermittency and quasi-
periodicity [12–19]. All these scenarios of transition go
through the destabilization of a mono-periodic regime. In
RB chaotic regimes it has also been found that the corre-
sponding attractor dimensions are small in confined sys-
tems [20] and rather large in extended geometries [21].

The case of small aspect ratio geometries is partic-
ularly interesting to study because the confinement re-
stricts the spectrum of spatial modes, which are allowed
in extended geometries, to one or few competing modes.
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Temporal and spatial modes can then be dissociated, thus
allowing the study of the dynamic behaviour of the sys-
tem. As mentioned above, such a study has been per-
formed for RB instability. For Bénard-Marangoni (BM)
convection (i.e. a horizontal fluid layer heated from be-
low and cooled from above with a free upper surface), few
works have been devoted to small vessels. These works
have mainly been directed to the study of the onset of
convection, the description of convective patterns and the
conditions of the appearance of time-dependent flows [3].
More recently, a numerical study has been carried out on
the transition to chaos for a fluid with a Prandtl number
taken equal to zero [22].

As far as we know dynamic regimes occurring in con-
fined BM convection have not been characterized using
tools such as spectral methods and attractors. It is in-
teresting to conduct such a study because in comparison
with RB convection, for which buoyancy is the only effect
involved, in studying a BM system both the buoyancy and
the free surface tension effects have to be taken into ac-
count.

Thus, the aim of this work is to recognize the differ-
ent dynamic regimes which appear when the vertical tem-
perature difference is increased (Marangoni number ris-
ing), using spectral methods and measuring the degree of
strangeness of chaotic regimes by their correlation dimen-
sions. The observed dynamic regimes will be linked to the
corresponding spatial modes by taking photographs of the
convective patterns.

BM convection is governed mainly by the following
dimensionless numbers: the Marangoni number: Ma =
(−dσ/dT ) (∆Td/ρνχ) where σ is the surface tension, ∆T
the vertical difference of temperature between the hori-
zontal limiting surfaces, d the depth of the oil layer, ρ the
density of the oil, ν its kinematic viscosity and χ the ther-
mal diffusivity, the Rayleigh number: Ra = αg∆Td3/νχ,
where α is the expansion coefficient of the silicone oil
and g the acceleration due to gravity, the Prandtl number
Pr = ν/χ; the aspect ratio Γ = A1/2/d, where A is the
area of the oil layer free surface in the hexagonal vessel
for our experimental set-up.

The influence of the above-mentioned physical param-
eters (Marangoni number, Ma, from 148 to 3636), Prandtl
number (Pr = 160 or 440) and the aspect ratio (Γ = 2.2
or 2.8) was considered. The outline of this paper is the fol-
lowing: experimental procedure and data processing tech-
niques are described in Section 2; in Section 3, the analysis
methods are briefly described; typical experimental results
are given in Section 4; finally, some conclusions are given
in Section 5.

2 Experimental procedure and data
processing techniques

2.1 Experimental procedure

The experimental principle used to conduct this study was
to link the dynamic regimes observed to a physical param-
eter that could be measured non-intrusively and which
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Fig. 1. Experimental set-up. C: Circular container, h: Hexag-
onal vessel, F: Fluid, M: Mirror, L: Laser, S: Screen, CCD:
Camera, B: Box, A: Annular insulating plate, E: Electric heater
(Peltier elements).

accurately reflected the dynamic behaviour of the system.
The use of horizontal laser beam deflection in [23,24] al-
lowed the recognition of the dynamic regimes and the var-
ious scenarios of transition to chaos in RB convection,
for which the deflection is due only to buoyancy and to
the corresponding temperature gradients within the liquid
layer.

For our experiments, we chose to use a vertical laser
beam (Fig. 1), with which it is possible to obtain more
information. Indeed, the beam is first reflected from the
liquid-air interface (s), then the transmitted beam crosses
the fluid layer perpendicularly to the horizontal (x, y)
plane, and it is reflected from the bottom of the container
(vs). Deflection (vs) is due to both the buoyancy (varia-
tion of the refraction index due to the thermal gradients
within the liquid layer) and to the interface deformation,
whereas deflection (s) is due only to the interface deforma-
tion [25]. From the analysis of the two beams it is possible
to assess the influence of the interfacial dynamic regime as
compared to what occurs both in the oil layer and at its
interface. Moreover, such measurement is a non-intrusive
method and the use of silicone oils (transparent oils with
sufficiently high viscosities) allows large temperature gra-
dients and measurable refraction index variations. Silicone
oils are commonly used in BM experiments also because
they are non-volatile liquids, have a high oxidation resis-
tance and have an excellent thermal stability. Moreover, a
more important property of silicone oils is that they have
a very low surface tension and consequently silicone oil-air
interfaces are not liable to any contamination that might
be caused by active agents at the surface (surfactants) [3].
As it is well known, such contamination can modify ther-
mocapillarity and therefore influences Marangoni convec-
tion [26].

The dynamics described below were observed in a
small hexagonal vessel (h), filled with silicone oil (F )
(Rhodorsil 47V 50 or Rhodorsil 47V 20 oils), with lateral
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Table 1. Thermo-physical properties of the Rhodorsil (47V 50 and 47V 20) silicone oils (at 25 ◦C).

Thermal Density Kinematic Expansion Thermal Surface Prandtl

conductivity ρ viscosity Coefficient diffusivity tension coefficient number

κ (W/mK) (Kg/m3) ν (m2/s) α (◦K−1) χ (m2/s) dσ/dT (Pr)

(kgs−2 ◦C−1)

20 Cst silicone oil 0.14 0.95 × 103 2 × 10−5 1.07 × 10−3 0.899 × 10−7 −2.7 × 10−5 160

50 Cst silicone oil 0.16 0.96 × 103 5 × 10−5 1.05 × 10−3 0.114 × 10−6 −2.7 × 10−5 440

walls made of polycarbonate and a reflective polished bot-
tom plate made of copper. The fluctuations of the temper-
atures imposed on this plate were about +/–0.1 ◦C thanks
to a controlled electric heater (E)(Peltier elements). The
heating rate was 0.3 ◦C/mn. The various gradual increases
of the temperature difference were followed by the mea-
surements at constant values of ∆T (Ma) which are main-
tained for periods of time longer than the largest horizon-
tal diffusion time, th = 4Γ 2tv ≈ 10 h, where tv is vertical
diffusion time, that is given by tv = d2/χ, which is a func-
tion of the experimental conditions and varies from 561 s
for Γ2 = 2.8 and the 50 Cst silicone oil to 1112 seconds
for Γ1 = 2.2 and the 20 Cst silicone oil. Before starting
the experiments, the possibility of non-uniformity in the
surface temperature of the bottom plate was checked by
means of infrared thermography and no horizontal tem-
perature gradients were detected at the precision of the
infrared camera (0.1 ◦C).

The hexagonal vessel was surrounded by the same sili-
cone oil which was limited laterally by the cylindrical con-
tainer (C) made of Perspex (diameter = 0.1 m) (Fig. 1).
Due to the fact that polycarbonate has a low thermal
conductivity (κp = 0.185 W/mK) close to that of sili-
cone oils (κ = 0.16 W/mK for the Rhodorsil 47V 50 oil or
κ = 0.14 W/mK for the Rhodorsil 47V 20 oil) and to the
existence of the oil guard ring, the hexagonal vessel lat-
eral walls can be considered as thermally insulating. The
thermo-physical properties of the silicone oils used in this
work, namely the Rhodorsil 47V 50 and Rhodorsil 47V 20,
are given in Table 1. The temperatures at the free surface
and on the copper bottom plate were measured by means
of thermocouples (diameter = 0.1 mm). The uncertainty of
the applied difference in temperature (∆T ) was estimated
to be +/–0.1 ◦C. The depth (d) of the liquid layer was
measured using a micrometer (precision +/–0.01 mm).

Some authors used for their experiments a thin air
layer bounded from above by a sapphire plate [27] or a
glass plate [28]. These plates are cooled by either air or
water at a regulated temperature. In such conditions the
air layer can be considered as motionless but, in such an
experimental set-up, the laser beam crosses various media
having various indexes of refraction. This leads to various
unwanted reflected beams on the screen (S) and beam
deflections which are not linked to the flow dynamics in
the oil layer. Moreover, the reflected laser beams also have
to cross a certain distance of air in order to obtain beam
deflections that can be detected on the screen (S). For our
experiments, in order to prevent the problems mentioned

above, the free oil surface is in contact with air which is
not bounded from above by a plate but is contained in a
temperature regulated box (B) as shown in Figure 1.

Indeed, in order to reduce the possible effect of air on
flow dynamics and to prevent any pollution, a small box
(0.2× 0.2× 0.2 m3), made of acrylic glass was used to en-
close the experimental set-up (Fig. 1). The temperature
of the air in the box was controlled thanks to a heat ex-
changer which was regulated at +/–0.5 ◦C. Moreover, in
order to prevent temperature gradients in the box (and
therefore the possible occurrence of convection in the air),
the circular container (C) was surrounded by a thick an-
nular thermally-insulating plate (A) made of Teflon which
limited the heating of air from below.

Despite all these precautions, it was necessary to know
the effect of air motion on flow dynamics. Any air motion
in the box could have two possible effects on flow dynamics
and consequently the corresponding beam deflections ((s)
and (vs) signals) which needed to be studied.

i) First it was necessary to know the effect of any possible
air motion on the (s) and (vs) deflections when the
laser beam crosses the air layer. We studied this effect
by replacing the oil layer by a mirror made of glass
and having a thickness similar to that of the liquid
layer. We checked that beam deflections which were
due to air only were very small (<1%) and could be
disregarded when compared to the deflections detected
in the oil layer.

ii) The second possible effect of the air is its influence on
the surface tension at the oil-air interface and thus on
the deflections of the (s) and (vs) beams. According to
Ozen et al. [29], the effect of the motion of air, which is
a gas with low viscosity and low thermal conductivity,
on thermocapillarity is disregarded and consequently
its influence on (s) beam deflections can also be disre-
garded. As for the possible influence of air motion on
the deflections of the (vs) signal (which as mentioned
above contains the effects of both volume and surface
tension (interface deformation)), our experiments were
carried out with thick oil layers (d = 0.8 or 1 cm) for
which buoyancy effects are much more significant than
thermocapillarity. Indeed, the relative importance of
surface tension and buoyancy forces is characterized by
the Bond number (Bo = Ra/Ma). For our experiments,
the values of Bo are high (Bo = 24 for d = 0.8 cm
(Γ = 2.8) and Bo = 37.5 for d = 1 cm (Γ = 2.2))
and therefore the buoyancy effects (i.e. v: volume com-
ponent in the (vs) signal) are dominant as compared
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to thermocapillarity (i.e. s: surface component in the
(vs) signal). Consequently, the very small effect of air
on thermocapillarity (i.e. the (s) signal) is even smaller
on the (vs) signal.

Thus, it can be concluded that the effect of air motion in
the box on flow dynamics and consequently on the mea-
sured beam deflections, although it does exist, is suffi-
ciently small in our experimental conditions for it to be
disregarded.

The dynamic behaviour of the system also depends on
the spatial convective pattern [7,23,24]. The relationship
between spatial patterns and dynamic regimes in small
aspect ratios has been studied in RB experiments [12,30].
For our experiments, in order to link the dynamic regime
to the corresponding spatial pattern and thus study the
interaction between spatial and temporal modes, pictures
were taken simultaneously with the acquisition of the sig-
nals for each considered state. The structure was visual-
ized by seeding the silicone oil layer with aluminium flakes.

The dynamic behaviour of the system was studied as
a function of the Marangoni number (from 148 to 3636),
Prandtl number (Pr1 = 440 for the 50 cst. Silicone oil at
25 ◦C, Pr2 = 160 for the 20 cst. Silicone oil at 25 ◦C) and
the aspect ratio (Γ1 = 2.2 (d1 = 1 cm), Γ2 = 2.8 (d2 =
0.8 cm)).

2.2 Data processing techniques

As mentioned above, during the experiments two laser
spots were observed on the screen (S) (Fig. 1). The first
spot was obtained by reflection of the laser beam at the
container bottom and contains both the volume (v) and
surface (s) effects (spot (vs)), whereas the second corre-
sponds to the reflection at the oil-air interface (spot (s)).
The displacements of the two spots were measured and
recorded by a CCD camera and a computer. The posi-
tions of the spot centres were calculated in real time using
contour extraction software developed by ourselves. Thus,
for each spot, its position is known from the Cartesian co-
ordinates (x, y) with respect to an arbitrarily fixed point
or from the polar coordinates (ρ, θ), the referential axis for
angle calculation being horizontal. As we were interested
in studying the two spots, the method used in [23,24] was
not suitable for our purposes. These authors used a photo-
diode system which allows the measuring of the variation
of luminous intensity due to the variation of the spot posi-
tion. The existence of two spots required the use of specific
image processing software. With the software which was
developed it was possible to obtain both the magnitude
and the direction of the deflection.

The time series recorded were then used to recognize
and characterize the dynamic regimes, by means of spec-
tral methods and attractor dimension calculations. Using
the four signals (xvs, yvs), (xs, ys), (ρvs, ρs) and (θvs, θs),
we can obtain for each signal: 1/ its Fourier spectrum,
2/ the auto-correlation function, 3/ the corresponding at-
tractor, and 4/ its correlation dimension.

3 Analysis methods

3.1 Spectral methods

As is well known, the distinction between periodic and
chaotic regimes can be made by using the power spectrum
of a dynamic variable, which in our case is the laser beam
deflection. In a periodic regime (i.e. a non-chaotic regime)
the power spectrum of the dynamic variable displays sharp
peaks at the fundamental frequencies. On the other hand,
in a temporally chaotic state the power spectrum is con-
tinuous and does not show any sharp peaks. In order to
validate our Fourier spectrum calculation software, mono-,
bi- and tri-periodic functions were generated. The spectra
obtained display the frequencies imposed when the time
series were constructed.

3.2 Characterization by attractors

As the use of attractors to characterize dynamic regimes
is well known nowadays, we will restrict ourselves here
to describing the overall concept. By examining only one
single dynamic variable x(t) it is possible to determine
the entire orbit in the phase space and the construction
of the corresponding attractor. The method used is the
well-known reconstruction technique (Takens [31,32] and
Packard et al. [33]) which is briefly described below. The
attractor was constructed in a phase space of (n) dimen-
sions. For this purpose, (n) values of the variable (x) were
taken: (x(t), x(t+td), ... x(t+(n−1)td); td is the time delay,
which is a multiple of the sampling period ∆t, td = p∆t,
where (p) is an integer.

Strange attractors corresponding to chaotic systems
are typically characterized by a fractal dimension (D)
smaller than the degrees of freedom of the system.
The correlation dimension of Grassberger and Procac-
cia [34,35] is one of many ways to define the dimension
of an attractor and it is the most commonly used, par-
ticularly in the characterization of the experimental time
series.

The attractor correlation dimension was calculated
from a locally measured time series by the method pro-
posed by Grassberger and Procaccia [34,35]. (D) is esti-
mated by the exponent which is given by the asymptotic
behaviour rD of the integral correlation function C(r, N):

C(r, N) =
1

N2

N∑

i,j=1i�=j

H (r − |Xi − Xj |) (1)

where N is the total number of points, H() is the Heav-
iside function and (Xi) is a vector in the n − D phase
space obtained from the reconstructed time series using
the time delay (td) and the reconstruction technique de-
scribed above. In practice, the correlation integral is eval-
uated using reference points. The averaged numbers of
points in hyper-spheres centered on the reference points
with radius (r) were calculated to evaluate the above equa-
tion. C(r) was determined using 18 000 to 250 000 data
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Fig. 2. The integral correlation function for various dimensions
(n) of the phase space (Ln − Ln plot). (n) varies from 2 to
16 (from left to right); the slopes of linear regions give the
correlation dimension (D).

points in order to meet the Tsonis criterion which consid-
ers (N) required for reliable calculations of the correlation
dimension (D) to be exponentially linked to the correla-
tion dimension (that is N ∼ 102+0.4D). A maximum di-
mension of the phase space equal to 16 and 100 reference
points were used [36–38].

To avoid the correlations between the reference points,
these points were chosen as follows: the time series were di-
vided into 100 intervals, and the first point of each interval
was chosen as a reference point. The number of radii was
equal to 100 and the smallest radius was taken as being
equal to the smallest distance between two points of the
attractor. The radius step (∆r) was chosen as the nth root
of 2, most often 4

√
2 [36–38]. In order to count the number

of points in the hyper-spheres, it is necessary to calculate
the distances between the various points and the reference
points. The rapidity of these calculations depends on the
norm chosen. The first norm was chosen, as in [36–38],
because it is the norm which allows quick calculations.

The slope in the Ln − Ln plot of C(r) was calculated
using the least square method in the linear parts of the
curves (Fig. 2). The calculations were carried out by in-
creasing the embedding dimension of the phase space un-
til the convergence of the correlation dimension (D) is
achieved. Thanks to a preliminary study, we reached the
conclusion that the value of (p) (which is involved in the
reconstruction method) does not affect the convergence of
the calculation of the attractor dimension. (p) was taken
as being equal to 2.

Software was developed which allows the calculation of
the correlation dimension as described above. It was vali-
dated by using periodic functions (mono periodic, D = 1
and bi-periodic, D = 2) and by calculating the dimensions
of Hénon’s model attractor (D = 1.22 with N = 20 000,
a = 1.4 and b = 0.3) and Coullet – Feigenbaum’s model

attractor (D = 0.50 with N = 20 000, λ = 3.57). The di-
mensions, calculated by means of our software, are in good
agreement with those calculated by other authors for the
same theoretical model coefficients [36,39,40].

4 Typical results

4.1 Deflections due to the temperature field
and the free surface deformation

When a laser beam crosses an isothermal layer of a trans-
parent liquid with a flat free surface, this beam is reflected
at the bottom (z = 0) and its spot, which is observed on a
screen, has a uniform brightness b0. In a convective state,
the temperature field T (x, y, z) and the deformation of the
free surface h(x, y) induce laser beam deflection. This de-
flection leads to a variation δb(x, y) of spot brightness from
homogeneous distribution. We report here the approach of
Thess and Orszag [41] in order to estimate respectively the
deflection due to the temperature field:

(
δb

b0

)

T

= 2H

(
dn0

dT

) (
∂2

x + ∂2
y

)
z=d∫

z=0

T (x, y, z)dz (2)

and that due to the free surface deformation:
(

δb

b0

)

h

= −H(2n0 − 1)
(
∂2

x + ∂2
y

)
h(x, y) (3)

where n0 is the liquid index of refraction at T = T0 and
dn0/dT is the coefficient of its variation with temperature.
For silicone oils, n0 ≈ 1.4 and dn0/dT ≈ −10−4K−1. (H)
is the distance between the screen and the free surface
and (d) the liquid layer depth. Consequently, if the de-
formation h(x, y) and the temperature field T (x, y, z) are
known, the relative importance of volume and interface
deformation effects on the laser beam deflection (the vari-
ation of brightness being equivalent to the magnitude of
beam deflection) can be estimated.

According to [42],

T (x, y, z) = Ti − (Ti − Ts)
z

d
+ (Ti − Ts)θ(z)f(x, y) (4)

the polynomial function θ(z) is estimated as in [42]:

θ
(z

d

)
= 0.6

(z

d

)
+ 0.015

(z

d

)2

+ 0.12
(z

d

)3

(5)

and according to [43],

h(x, y) = H0f(x, y) (6)

with H0 ≈ 10−3 mm [43], which leads to:

r =

(
δb
b0

)

T(
δb
b0

)

h

= 0.036.d.(Ti − Ts) (7)
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Fig. 3. Displacement histograms. Γ1 = 2.2, Pr1 = 440. Displacement magnitudes: (a) spot (s), Ma = 355. (b) spot (vs),
Ma = 355. (c) spot (vs), Ma = 958. Displacement angles: (d) spot (s), Ma = 247. (e) spot (s), Ma = 1, 135.

with d: depth of the liquid layer (mm), Ti: temperature of
the lower limiting surface, Ts: temperature of the upper
limiting surface.

In our case, (r) varies from 1.1 to 8.3 for a (∆T ) in-
creased from 3 ◦C to 23 ◦C for d1 = 1 cm, and from
1.2 to 6.9 for a (∆T ) increased from 4 ◦C to 24 ◦C for
d2 = 0.8 cm. Thanks to these calculations, it can be con-
cluded that the deflection due to temperature field vari-
ation is always greater than that corresponding to free
surface deformation.

In Figure 3 the displacement magnitude and angle
histograms of the spots (vs) and (s) are shown. From
Figures 3a, 3b and 3c, it can be noted that: i) for the
same Ma(= 355) larger displacements of spot (s) are ob-
served than for the spot (vs); ii) there are more small
displacements in the histogram of spot (s) (Fig. 3a) than
for the (vs) histogram (Fig. 3b); iii) the more complex

the system (increased Ma), the smaller the displacements
are (Figs. 3b and 3c). In the angle histograms (Figs. 3d
and 3e), it can be noted that there are some preferred di-
rections for the displacements. Indeed, peaks are observed
around the 0◦, 30◦, 45◦ and 90◦ angles. On the other hand,
when the system becomes more complex (increased Ma)
the histogram tends to become more uniform (Fig. 3e).

In Figure 4, the average displacements of spots (vs)
and (s) versus (Ma) for various Pr and Γ are shown.
It can be noted that: i) the displacement increases with
(Ma) for all experimental conditions; ii) for the same Pr
(Pr2 = 160) and Γ1 = 2.2, (vs) displacements are larger
than those of the spot (s), which agrees with the conclu-
sion of the calculations mentioned above; iii) for the same
aspect ratio (Γ1 = 2.2) and a fixed value of (Ma), the av-
erage value of the (vs) displacement is greater at higher
Pr (Pr1 = 440) than at the lower one (Pr2 = 160).
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Fig. 4. Average displacements of the spots (s) and (vs), for
various Ma, Pr and Γ .

Fig. 5. Fourier spectrums of the (vs) signal. Mono-periodic
regime. The fundamental frequency f1 = 0.7 Hz and its har-
monic. Ma = 222; Pr1 = 440 at 25 ◦C; Γ1 = 2.2.

4.2 Transition to temporal chaos

As an example of a sequence of transitions between dy-
namic regimes leading to chaos, the experiment carried
out at Pr1 = 440 and Γ1 = 2.2 is described below. The
first bifurcation observed after the onset of convection is
analogous to the Hopf bifurcation in RB convection, which
leads to a time-dependent regime. Indeed, for Ma = 222,
Figure 5 shows a spectrum of the (vs) signal with one
peak at the frequency f1 = 0.7 Hz and its harmonic,
which corresponds to a mono-periodic regime. By increas-
ing Ma to 370, a second peak is observed at the frequency
f2 = 1.1 Hz (Fig. 6), which corresponds to a bi-periodic
state. All the other peaks can be analyzed as linear com-
binations of the two fundamental frequencies. With a fur-
ther increase of Ma to 543, a chaotic state is observed,
which is characterized by a continuous spectrum without
any peaks (Fig. 7) and an auto-correlation function which
vanishes for a long period of time (Fig. 8).

Such transition to temporal chaos, via quasi-
periodicity, was also observed in RB instability. Indeed,
the transition to temporal chaos via quasi-periodicity in
RB convection was observed to occur either from a bi-

Fig. 6. Fourier spectrum of the (vs) signal. Bi-periodic regime.
Ma = 370; Pr1 = 440 at 25 ◦C; Γ1 = 2.2. f1 = 0.7 Hz and
f2 = 1.1 Hz.

 

Fig. 7. Fourier spectra of the (vs) signal. Chaotic regime.
Ma = 543; Pr1 = 440 at 25 ◦C; Γ1 = 2.2.

Fig. 8. Autocorrelation function of the (vs) signal. Chaotic
regime. Ma = 543; Pr1 = 440 at 25 ◦C; Γ1 = 2.2.

periodic to a chaotic state, or from a tri-periodic regime
to chaos [23,24]. For BM instability, the transition to tem-
poral chaos via quasi-periodicity, for these experimental
conditions (Pr1 = 440 and Γ1 = 2.2), seems to occur only
via a bi-periodic regime and the destruction of a T 2 torus.
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Fig. 9. Variations of the correlation dimensions of the (s) and
(vs) signals as functions of Ma, Pr and Γ .

4.3 Dimensions of the strange attractors

The appearance of a broad continuous band in the Fourier
spectrum is the indication of the transition to a chaotic
state. However, to know if this chaos is random or deter-
ministic and to measure the degree of strangeness, other
methods need to be used. The aim of attractor construc-
tion and correlation dimension calculation is to provide
such information. Thus, in order to follow, quantitatively
the evolution of the chaotic dynamic regimes with the in-
crease of (Ma), the correlation dimensions of the corre-
sponding attractors were calculated.

In Figure 9 the attractor dimensions of the (vs) and
(s) signals are plotted as functions of (Ma) for various Pr
and Γ . It can be noted that the (vs) dimensions are larger
than those of (s), which is in agreement with the fact that
the (vs) signal contains both volume and interface defor-
mation effects whereas the (s) signal corresponds only to
the free surface deformation. It can also be seen in Figure 9
that chaos develops with (Ma) for all experimental con-
ditions. It is also shown that the (s) dimension increases
linearly with (Ma), whereas the variation of the (vs) di-
mension, as a function of (Ma) for fixed values of Pr and
Γ is composed of two parts: at first it increases rapidly,
then the increase is slower.

For Pr1 = 440, the influence of the aspect ratio on the
correlation dimension was considered. It can be seen that,
as expected, the system is more complex for Γ2 = 2.8 than
for a smaller aspect ratio (Γ1 = 2.2) (Fig. 9). A similar
result was also reached by Libchaber and Maurer [44],
who showed, for a RB experiment with helium, the large
dependence of temporal behaviour as a function of the
aspect ratio. They observed periodic oscillations for Γ < 3
and chaotic regimes for Γ > 3, starting from a Rayleigh
number twice its critical value.

The dimension of the time series, corresponding to the
distance between the two spots (i.e. spots (vs) and (s)),
was also calculated. The dimension was found to be con-
stant (D = 7 ± 0.1), which leads us to think that this
dimension might be linked to the depth of the oil layer,
which is constant for all the experiments conducted with
the same aspect ratio.

4.4 Transition to spatio-temporal chaos

As the dynamic regime is linked to the spatial convective
pattern [7], pictures of the pattern were taken in order
to try to provide answers concerning the nature of the
chaos (temporal or spatio-temporal). For example, Fig-
ure 10 shows pictures corresponding to the two values of
the (Pr) number for Γ1 = 2.2. Thus, one convective cell is
observed, for a larger range of (Ma) for Pr2 = 160 than
for Pr1 = 440. Indeed, a breaking of the convective cell
occurs at Ma = 1581 for Pr2 and at Ma = 740 for Pr1.
Consequently, for the above mentioned values of (Ma),
transitions to spatio-temporal chaos are observed through
the mobility of the pattern and the involvement of the
spatial modes. The breaking of the convective cell is prob-
ably due to a very strong chaotic state which leads to the
excitement and appearance of other spatial modes. For ex-
ample, in RB instability the range of the Rayleigh number,
for which deterministic (temporal) chaotic regimes are ob-
served, is often limited and when the Rayleigh number is
further increased the convective pattern is broken and spa-
tial chaos is observed.

From the pictures in Figure 10 and the curves in
Figure 9 it can be concluded that for Pr2 = 160 and
Ma < 1581, the chaos is temporal and (D) is around 5
for the (s) signal and slightly higher than 6 for (vs). For
Pr1 = 440, the chaos is spatio-temporal for Ma > 740
and the dimension (D) is around 8 for the (vs) signal and
varies from 5 to 6 for the (s) signal.

5 Conclusions

A transition to temporal chaos via quasi-periodicity, as
in RB convection, was observed in BM convection in a
small aspect ratio geometry (Γ = 2.2). This transition
occurs via a bi-periodic regime and the destruction of a
T 2 torus.

The calculated attractor dimensions (from 3.5 to 8.5)
for BM instability are larger than those found for RB in-
stability in similar confined geometries [20] but they are
close to those found by Sato et al. [21] (6.5 or 9) in a quasi-
one-dimensional RB system (Γx = 15 and Γy = 1). The
BM dimensions are also of the same order as those cal-
culated in an electro-convection system (=5.1) [45]. The
difference between the values of the dimensions obtained
in this work compared to those of confined RB convection
(aspect ratios of the same order) can be attributed to the
fact that in our experiments, in addition to the buoyancy
effects, as in RB convection, surface tension effects are also
involved. Therefore, it is evident that in BM convection
the number of independent variables that must be speci-
fied is larger than in RB instability (the dimension of an
attractor being linked to the number of independent vari-
ables required to specify a system state at any given time).
As for the effect of air, although it does exist, it has been
proved to be sufficiently small for our experimental con-
ditions in comparison with buoyancy and surface tension
effects to be disregarded.
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(a)  (b) 

               

     (c)                                                                   (d)
Fig. 10. Pictures of the convective patterns corresponding to various Ma and Pr. Γ1 = 2.2. The structures in (b) and (d) are
moving; the patterns shown are observed at a given time. Pr1 = 440: (a) Ma = 247; (b) Ma = 962. Pr2 = 160: (c) Ma = 790;
(d) Ma = 1928.

It can also be concluded that chaos develops with (Ma)
for all experimental conditions. As for the variation as a
function of the aspect ratio, the system is more complex
for Γ = 2.8 than for a smaller aspect ratio (Γ = 2.2).

The transition from temporal chaos to spatio-temporal
chaos has also been observed. For larger values of the
Marangoni number, spatial modes are involved through
pattern dynamics. For Γ = 2.2, at Pr2 = 160 and
Ma < 1581, the chaos is temporal and (D) is around
5 for the (s) signal and slightly higher than 6 for (vs).
For Pr1 = 440, the chaos is spatio-temporal at Ma > 740
and the dimension (D) is around 8 for the (vs) signal and
varies from 5 to 6 for the (s) signal.

This work will be continued in the future by carry-
ing out other studies in order to know if other scenarios
(intermittency, sub-harmonic cascade) may also lead to a
chaotic regime in BM convection. With the correlation di-
mension it is possible to obtain general information about
the degree of strangeness of the system and about the av-
erage rate of its trajectory divergence. However, the corre-
lation dimension does not make possible to know whether
there are one or more dilatant directions on the attrac-
tor and does not therefore allow the consideration of the
other property of the strange attractors, that is their sen-
sivity to initial conditions. Lyapunov exponents [46,47]
allow the obtaining of such information because they give
information about the local stability properties of the at-
tractor. Thus, this study will be pursued using Lyapunov
exponents in order to confirm the results obtained in this
work and to go deeper into the characterization of the
attractors.
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